
Scheduling with Global Information in Distributed Systems
�

Fabrizio Petrini
�

and Wu-chun Feng
���

�
fabrizio, feng � @lanl.gov

�
Computing, Information, and Communications Division

Los Alamos National Laboratory
Los Alamos, NM 87545

�
School of Electrical & Computer Engineering

Purdue University
W. Lafayette, IN 47907

Abstract

Buffered coscheduling is a distributed scheduling
methodology for time-sharing communicating processes in
a distributed system, e.g., PC cluster. The principle mech-
anisms involved in this methodology are communication
buffering and strobing. With communication buffering,
communication generated by each processor is buffered and
performed at the end of regular intervals (or time slices)
to amortize communication and scheduling overhead. This
regular communication structure is then leveraged by in-
troducing a strobing mechanism which performs a total ex-
change of information at the end of each time slice. Thus,
a distributed system can rely on this global information to
more efficiently schedule communicating processes rather
than rely on isolated or implicit information gathered from
local events between processors.

In this paper, we describe how buffered coscheduling is
implemented in the context of our SMART simulator. We
then present performance measurements for two synthetic
workloads and demonstrate the effectiveness of buffered
coscheduling under different computational granularities,
context-switch times, and time-slice granularities.

Keywords: distributed resource management, parallel job
scheduling, distributed operating systems, co-scheduling,
gang scheduling.

�
This work was supported by the U.S. Dept. of Energy through Los

Alamos National Laboratory contract W-7405-ENG-36. This paper is LA-
UR 00-894.

1. Introduction

The scheduling of parallel jobs has long been an active
area of research [7, 8]. It is a challenging problem because
the performance and applicability of parallel scheduling al-
gorithms is highly dependent upon factors at different lev-
els: the workload, the parallel programming language, the
operating system (OS), and the machine architecture.

Time-sharing scheduling algorithms are particularly at-
tractive because they can provide good response time with-
out migration or predictions on the execution time of the
parallel jobs. However, to achieve good performance,
time-sharing algorithms require communicating processes
to be scheduled simultaneously. This is a critical prob-
lem because the software communication overhead and the
scheduling overhead to wake up a sleeping process domi-
nate the communication time on most parallel machines.

In recent years, researchers have developed parallel
scheduling algorithms that can be loosely organized into
three main classes, according to the degree of coordination
between processors: explicit coscheduling, local scheduling
and implicit or dynamic coscheduling.

On the one end of the spectrum, explicit coscheduling [6]
ensures that the scheduling of communicating jobs is coor-
dinated by creating a static global list of the order in which
jobs should be scheduled and then requiring a simultaneous
context-switch across all processors. Unfortunately, this
approach is neither scalable nor reliable. Furthermore, it
requires that the schedule of communicating processes be
precomputed, thus complicating the coscheduling of appli-
cations and requiring pessimistic assumptions about which
processes communicate with one another. Lastly, explicit
coscheduling of parallel jobs also adversely affects perfor-
mance on interactive and I/O-based jobs [13].

Proceedings of the 20th International Conference on Distributed Computing Systems (ICDCS 2000).

At the other end of the spectrum is local schedul-
ing, where each processor independently schedules its pro-
cesses. While this approach is attractive due to its ease of
construction, the performance of fine-grain communicating
jobs is severely impacted because scheduling is not coordi-
nated across processors [10].

An intermediate approach developed at UC Berkeley
and MIT in recent years is implicit or dynamic coschedul-
ing [1, 5, 15, 20]. With implicit coscheduling, each lo-
cal scheduler makes independent decisions that dynami-
cally coordinate the scheduling actions of cooperating pro-
cesses across processors. These actions are based on local
events that occur naturally within communicating applica-
tions. For example, on message arrival, a processor specula-
tively assumes that the sender is active and will likely send
more messages in the near future. The implicit information
available for implicit coscheduling consists of two inherent
events: response time and message arrival [1].

The programming model used in the implementation of
implicit coscheduling does not support a full-fledged com-
munication library as MPI and considers only three ba-
sic communication operations: reads and writes, request-
response messages between pairs of processes requiring the
requesting process to wait for the response, and barriers to
synchronize all processes.

The limitations of the above localized flow-control strat-
egy emerge when processes perform continuous reads or
writes in an irregular communication pattern, e.g., they can
flood the output buffers with write operations [1]. Some
of these limitations are addressed in [14] with a technique
called periodic boost. Instead of sending an interrupt for
each incoming message, the kernel periodically examines
the status of the network interface, thus reducing the over-
head with high communication workloads. Our method-
ology is based on a similar buffering technique which is
integrated with global time-slicing and and a strobing algo-
rithm.

The rest of the paper is organized as follows. Sec-
tion 2 provides the motivation for our buffered coscheduling
methodology. The methodology itself is described in Sec-
tion 3 and some preliminary results are presented in Sec-
tion 4. Finally, we present our conclusions in Section 5.

2. Motivation

Figure 1 shows the global processor and network utiliza-
tion (i.e., the number of active processors and the fraction
of active links) during the execution of a transpose FFT al-
gorithm on a parallel machine with ����� processors. These
processors are connected with an indirect interconnection
network using state-of-the-art routers [3]. Based on these
figures, there is obviously an uneven and inefficient use of
system resources. During the two computational phases

of the transpose, the network is idle. Conversely, when
the network is actively transmitting messages, the proces-
sors are essentially idle. These characteristics are shared
by many SPMD programs, including Accelerated Strate-
gic Computing Initiative (ASCI) application codes such as
Sweep3D [11]. Hence, there is tremendous potential for in-
creasing resource utilization in a parallel machine.

0

10

20

30

40

50

60

70

80

90

0 10000 20000 30000 40000 50000 60000 70000

A
ct

iv
e

pr
oc

es
so

rs

Time (cycles)

Active processors

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10000 20000 30000 40000 50000 60000 70000

N
et

w
or

k
U

til
iz

at
io

n

Time (cycles)

Network utilization

a) b)

Figure 1. Resource Utilization in a Transpose
FFT Algorithm.

Another important characteristic shared by many paral-
lel programs is their access pattern to the network. The vast
majority of parallel applications display bursty communica-
tion patterns with alternating spikes of impulsive commu-
nication with periods of inactivity [16]. Thus, there exists
a significant amount of unused network bandwidth which
could be used for other purposes.

3 Multitasking Parallel Jobs

In order to improve the resource utilization of parallel
programs, we propose our buffered coscheduling method-
ology to multitask parallel jobs and allow all the commu-
nication and I/O which arise from a set of parallel pro-
grams to be overlapped with the computations in those pro-
grams. Buffered coscheduling consists of three techniques:
communication buffering, strobing, and non-blocking, one-
sided communication.

3.1 Communication Buffering

Rather than incurring communication and scheduling
overhead on a per-message basis, we propose to accumulate
the communication messages generated by each processor
and amortize the overhead over a set of messages. Specif-
ically, the cost of the system calls necessary to access the
kernel data structures for communication is amortized over
a set of system calls rather than being incurred on each indi-
vidual system call. This implies that our methodology can
be tolerant to the potentially high latencies that can be in-
troduced in a kernel call or in the initialization of the NIC
that can reside on a slow I/O bus. Also, by delaying the
communication, we allow for the global scheduling of the

communication pattern. And because we can implement
zero-copy (or low-copy, if we desire fault-tolerant commu-
nication) communication, our approach to communication
buffering can theoretically achieve performance compara-
ble to user-level network interfaces (i.e., OS-bypass proto-
cols) [2] without using specialized hardware.

3.2 Strobing

The uneven resource utilization and the periodic, bursty
communication patterns generated by many parallel appli-
cations can be exploited to perform a total exchange of in-
formation and a synchronization of processors at regular in-
tervals with little additional cost. This provides the paral-
lel machine with the capability of filling in communication
holes generated by parallel applications.

In order to provide the above capability, we propose a
strobing mechanism to support the scheduling of a set of
parallel jobs which share a parallel machine. Let us assume
that each parallel job runs on the entire set of � proces-
sors, i.e., jobs are time-sharing the whole machine. At a
high level, the strobing mechanism performs an optimized
total-exchange of control information which then triggers
the downloading of any buffered packets into the network.

The strobe can be implemented by designating one of the
processors as the master, the one who generates the “heart-
beat” of the strobe. The generation of heartbeats is achieved
by using a timeout mechanism which can be associated with
the network interface card (NIC). This ensures that strob-
ing incurs little CPU overhead as most NICs can count
down and send packets asynchronously. This is true for a
wide range of NICs, ranging from simple 100-Mb/s Ether-
net cards to more sophisticated cards such as Myrinet [3].

On reception of the heartbeat, each processor (exclud-
ing the master) is interrupted and downloads a broadcast
heartbeat into network. After downloading the heartbeat,
the processor continues running the currently active job.
(This ensures computation is overlapped with communica-
tion.) When � heartbeats arrive at a processor, the proces-
sor enters a strobing phase where its kernel downloads any
buffered packets to the network1.

Figure 2 outlines how computation and communication
can be scheduled over a generic processor. At the beginning
of the heartbeat, ��� , the kernel downloads control packets
for the total exchange of information. During the execu-
tion of the barrier synchronization, the user process then re-
gains control of the processor; and at the end of it, the kernel
schedules the pending communication accumulated before

1Each heartbeat contains information on which processes have packets
ready for download and which processes are asleep waiting to upload a
packet from a particular processor. This information is characterized on a
per-process basis so that on reception of the heartbeat, every processor will
know which processes have data heading for them and which processes on
that processor they are from.

t 0

δ

�� ��

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��BARRIER

K K

t t t1 2 3

BARRIER

TIME

Computation

Communication

K

K = kernel

Figure 2. Scheduling Computation and Com-
munication. The communication accumu-
lated before � � is downloaded into the network
between �� and ��� .

��� to be delivered in the current time slice, i.e., � . At �� , the
processor will know the number of incoming packets that it
is going to receive in the communication time-slice as well
as the sources of the packets and will start the downloading
of outgoing packets.

This strategy can be easily extended to deal with space-
sharing where different regions run different sets of pro-
grams [6, 12, 21]. In this case, all regions are synchronized
by the same heartbeat.

The total exchange of information can be properly op-
timized by exploiting the low-level features of the inter-
connection network. For example, if control packets are
given higher priority than background traffic at the send-
ing and receiving endpoints, they can be delivered with
predictable network latency2 during the execution of a di-
rect total-exchange algorithm3 (Figure 3). We generated
this distribution using a network of 256 processing nodes
equipped with wormhole routers similar to those in the SGI
Origin 2000 and assumed the existence of random back-
ground traffic that occupies 80% of the network capacity.
If control packets are prioritized at the network endpoints,
they can be delivered with a bounded latency of 30 ��� .

We also analyzed the execution time of the direct total-
exchange algorithm in a family of indirect networks with
up to ��� ��� processing nodes. In this experiment, whose
results are shown in Figure 4, we assume the existence of
background traffic that varies from ����� to ����� of the net-
work capacity. We can see that the execution time is largely
insensitive to the intensity of the background traffic. With
��� processing nodes (the configuration of a single SGI Ori-
gin 2000 cluster) the execution time is only 50 ��� , and this
increases to 150 ��� with � ��� nodes. Due to the quadratic
increase in the number of messages sent during the total ex-
change, the execution time reaches 1 !� with ������� nodes,

2The network latency is the time spent in the network without including
source and destination queueing delays.

3In a direct total-exchange algorithm, each packet is sent directly from
source to destination, without intermediate buffering.

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30

P
ac

ke
ts

Network latency (µsec)

Network latency distribution of the control packets

Figure 3. Network Latency Distribution.

limiting the scalability of the approach.

8

16

32

64

128

256

512

1024

2048

4 8 16 32 64 128 256 512 1024

E
xe

cu
tio

n
tim

e
(µ

se
c)

Network size

Barrier synchronization execution time

0.2
0.4
0.6
0.8

Figure 4. Execution time of the total exchange
algorithm in a family of interconnection net-
works with up to � ����� processing nodes.

This scalability problem can be addressed in a clustered
architecture like ASCI Blue Mountain by using a multi-
phase, indirect algorithm. In the first phase, we perform
a total exchange within each cluster. Next, we do a total ex-
change between clusters. Finally, we conclude with a final
phase internal to the clusters, giving a barrier synchroniza-
tion time of less than 300 ��� .

The global knowledge of the communication pattern pro-
vided by the total exchange allows for the implementation
of efficient flow-control strategies. For example, it is pos-
sible to avoid congestion inside the network by carefully
scheduling the communication pattern and limiting the neg-

ative effects of hot spots by damping the maximum amount
of information addressed to each processor during a time-
slice. The same information can be used at the kernel
level to provide fault-tolerant communication. For example,
the knowledge of the number of incoming packets greatly
simplifies the implementation of receiver-initiated recovery
protocols.

3.3 Blocking vs. Non-Blocking

One of the most limiting constraints in the implementa-
tion of time-sharing algorithms is the need to schedule si-
multaneously communicating processes. This problem is
exacerbated with blocking communication, which imposes
an explicit handshake between sender and receiver.

We argue that this problem can eliminated, or at least al-
leviated, by slightly modifying the communication structure
of parallel jobs and replacing blocking communication with
non-blocking primitives and/or one-sided communication.

FENCE

FENCE

put

putputput

put

b)a)

send

send

receive

receive

receive

send

CBA CBA

Figure 5. (a) Message Passing. (b) One-Sided
Communication.

Let us consider the following example. The dynamics of
a message-passing program can be represented as a two-
dimensional graph with processes on the horizontal axis
and time on the vertical one, as shown in Figure 5. Ar-
rows between processes represent communication between
a sender and a receiver. In Figure 5(a), three processes ex-
change messages. For the sake of convenience, let us as-
sume that there is no dependency between the messages
(i.e., they can be sent in any order). Using a traditional,
blocking, message-passing programming style, we must de-
fine a communication schedule even if one is not required,
e.g., A sends to B, B receives from A and sends to C, C
receives from B and sends to A.

With one-sided communication (or non-blocking com-
munication primitives, in general), the actual message trans-
mission and the synchronization are decoupled, leaving
many degrees of freedom to re-arrange message transmis-
sion. In Figure 5(b), the same communication pattern is

delimited by two barriers which include the communica-
tion executed with put primitives. The communication can
be executed in any order, provided that the information is
delivered at the end of the synchronization calls. Also,
communicating processes do not need to be simultaneously
scheduled to perform the communication.

3.4 Bulk-Synchronous Parallel Programs

Using our proposed strobing and buffering mechanisms,
any generic parallel program can be transformed into a
Bulk-Synchronous Parallel (BSP) one [19]. Although the
buffering and strobing mechanisms alone improve parallel
program performance, transforming a parallel program into
a BSP one not only can improve performance further but
also allows for accurate prediction of the execution times.

A BSP computation consists of a sequence of parallel
supersteps. During a superstep, each processor can per-
form a number of computation steps on values held locally
at the beginning of the superstep and can issue various re-
mote read and write requests that are buffered and delivered
at the end of the superstep. This implies that communica-
tion is clearly separated from synchronization, i.e. it can
be performed in any order, provided that the information is
delivered at the beginning of the following superstep. How-
ever, while the supersteps in the original BSP model can be
variable in length, our programming model generates com-
putation and communication slots which are fixed in length
and are determined by the time-slice.

One important benefit of the BSP model is the ability to
accurately predict the execution time requirements of paral-
lel algorithms and programs. This is achieved by construct-
ing analytical formulae that are parameterized by a few
constants which capture the computation, communication,
and synchronization performance of a � -processor system.
These results are based on the experimental evidence that
the generic collective communication pattern generated by
a superstep called

�
-relation4 can be routed with predictable

time [9, 17]. This implies that the maximum amount of in-
formation sent or received by each processor during a com-
munication time-slice can be statically determined and en-
forced at run time by a global communication scheduling
algorithm. For example, if the duration of the time-slice is
� and the permeability of the network (i.e., the inverse of the
aggregate network bandwidth) is � , the upper bound

�������
of information, expressed in bytes, that can be sent or re-
ceived by a single processor is

�������
	�� . Furthermore, by
globally scheduling a communication pattern, as described
in Section 3.2, we can derive an accurate estimate of the
communication time with simple analytical models already
developed for the BSP model [4].

4 � denotes the maximum amount of information sent or received by
any process during the superstep.

Another important benefit of the BSP model is higher
resource utilization over the parallel machine, irrespective
of the computational and communication patterns. For ex-
ample, a sparse communication pattern (where a single pro-
cessor receives

� �����
bytes) or a more dense communica-

tion pattern (where more processors share the same upper
bound) can be routed in the same communication time-
slice. This means that it is possible to use spare commu-
nication bandwidth to deliver packets generated by other
parallel jobs without detrimental effects. More generally,
as with any multiprogrammed system, multitasking a col-
lection of bad (parallel) programs, i.e., unbalanced compu-
tation or communication, may produce the same behavior as
a single well-behaved (parallel) program. Multitasking can
provide opportunities for filling in “spare communication
cycles” by merging sparse communication patterns together
to produce a denser communication pattern.

Lastly, the BSP model is also beneficial for fault tol-
erance5. Fault tolerance can be naturally implemented by
checkpointing the machine at the synchronization points at
the end of a time-slice.

4 Experimental Results

Our preliminary results include a working implemen-
tation of a representative subset of MPI-2 on a detailed
(register-level) simulation model [18]. The simulation en-
vironment includes a standard version of MPI-2 and a mul-
titasking one that implements the main features of our pro-
posed methodology.

4.1 Characteristics of the Synthetic Workloads

As in [5], the workloads used consist of a collection
of single-program multiple-data (SPMD) parallel jobs that
alternate phases of purely local computation with phases
of interprocess communication. A parallel job consists
of a group of � processes where each process is mapped
onto a processor throughout its execution. Processes com-
pute locally for a time uniformly selected in the interval� ����� ��� ����� ��� . By adjusting � , we model parallel pro-
grams with different computational granularities; and by
varying � , we change the degree of load-imbalance across
processors. The communication phase consists of an open-
ing barrier, followed by an optional sequence of pairwise
communication events separated by small amounts of local
computation, � , and finally an optional closing barrier.

We consider two communication patterns: Barrier and
Transpose. Barrier consists of only the opening barrier and
thus contains no additional dependencies. This workload

5This is of vital importance to the large ASCI supercomputers where
the MTBF can be on the order of hours.

can be used to analyze how our methodology responds to
load imbalance. Transpose is a communication-intensive
workload that emulates the communication pattern gener-
ated by the FFT transpose algorithm

For our synthetic workload, we consider three parallel
jobs with the same computational granularity, load imbal-
ance, and communication pattern arriving at the same time
in the system. The communication granularity, � , is fixed
at � ��� . The number of communication/computation iter-
ations is scaled so that each job runs for approximately �
second in a dedicated environment. The system consists of

� � processors, and each job requires
� � processes (i.e. jobs

are only time-shared).

4.2 The Simulation Model

The simulation tool that we used in our experimental
evaluation is called SMART (Simulator of Massive ARchi-
tectures and Topologies) [18], a flexible tool designed to
model the fundamental characteristics of a massively paral-
lel architecture.

The current version of SMART is based on the x86 in-
struction set. The architectural design of the processing
nodes is inspired by the Pentium II family of processors.
In particular, it models a two-level cache hierarchy with a
write-back L1 policy and non-blocking caches.

For our experiments, we assume a network of
� � pro-

cessors, each running at 500 MHz, interconnected in a
� -dimensional cube topology with performance character-
istics similar to those of Myrinet routing and network
cards [3]. This network features a one-way data rate of
about � Gb/s and a base network latency of few ��� .

The run-time support running on this simulated platform
includes a standard version of a substantive subset of MPI-2
and a multitasking version of the same subset that performs
the strobing algorithm at the end of each time-slice as out-
lined in Section 3. It is worth noting that the multitasking
MPI-2 version is actually much simpler than the sequential
one because the buffering of the communication primitives
greatly simplifies the run-time support.

4.3 Sensitivity Analysis

Figures 6 and 7 illustrate the communication and com-
putation characteristics of our synthetic benchmarks as a
function of the communication pattern, granularity, load-
imbalance, time-slice duration, and context-switch penalty.
Each bar shows the percentage of time spent in one of the
following states, averaged over all processors: computing,
context-switching and idling.

For each communication pattern, we analyze the Carte-
sian product of nine alternatives generated by considering
time-slices of ����� ��� , � !� and � !� with context-switch

penalties of ��� , � ��� , and ��� �!��� . For each alternative,
we reduce the computational grain size � , going from left
to right, from 50 !� down to 100 ��� and consider ”six
groups of three bars” of experiments. Each group has the
same computational granularity, and the load imbalance is
increased as a function of the granularity itself. We consider
three cases: � 	 � (i.e. no variance), � 	 � (in this case
the variance is equal to the computational granularity) and� 	 � � (high degree of imbalance).

At the bottom of each figure we also report the break-
down for the same communication pattern when the work-
load is run in dedicated mode with standard MPI-2 run-time
support (i.e., a single job is run until completion without
multitasking). A black square under a bar highlights the
configurations where the multitasking approach produces
better resource utilization than the standard approach.

Based on Figures 6 and 7, we make the following ob-
servations. First, the performance of buffered coschedul-
ing is sensitive to the context-switch latency. As context-
switch latency decreases, resource utilization and through-
put improve. Second, as the load imbalance of a program
increases, the idle time increases. Third, and most impor-
tantly, these initial results indicate that the time-slice length
is a critical parameter in determining overall performance.
A short time-slice can achieve excellent load balancing even
in the presence of highly unbalanced jobs. The downside is
that it amplifies the context-switch latency. On the other
hand, a long time-slice can virtually hide all the context-
switch latency, but it cannot reduce the load imbalance, par-
ticularly in the presence of fine-grained computation.

More specifically, Figure 6(g) shows that a relatively
small time-slice coupled with a small context-switch la-
tency generally results in better processor utilization than a
single job running in a dedicated environment (Figure 6(l))
in eleven cases out of eighteen. Running a single job pro-
vides only slightly better (less than � ���) performance with
perfect load balancing (� 	 �) because we have to pay the
context-switch penalty without improving the load balance.
On the other hand, in the presence of load imbalance, job
multitasking can smooth out the differences in the load.

As a rule of thumb, buffered coscheduling performs ad-
mirably as long as the average computational grain size is
larger than the time-slice, and the time-slice in turn is suf-
ficiently larger than the context-switch penalty. In addition,
when the average computational grain size is larger than the
time-slice, the processor utilization is mainly influenced by
the degree of imbalance.

In these initial experimental results, we did not take
into account the effects of the memory hierarchy on the
working sets of different jobs. As a consequence, buffered
coscheduling requires a larger main memory in order to
avoid memory swapping. We consider this as the main lim-
itation of our approach.

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 500 us, Context Switch 50 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 500 us, Context Switch 100 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 500 us, Context Switch 200 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 1 ms, Context Switch 200 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 2 ms, Context Switch 200 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 1 ms, Context Switch 100 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 2 ms, Context Switch 100 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 1 ms, Context Switch 50 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 2 ms, Context Switch 50 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Barrier

Switch

Compute

Idle

a)

d)

b) c)

e) f)

g) h) i)

l)

Figure 6. Execution Characteristics of the Barrier Workload.

5. Conclusion

In this paper we have presented buffered coscheduling,
a new methodology to multitask parallel jobs on a parallel
computer. Buffered coscheduling represents a significant
improvement over existing work reported in the literature.
It allows for the implementation of a global scheduling pol-
icy, as done in explicit coscheduling, while maintaining the
overlapping of computation and communication provided
by implicit coscheduling.

We initially addressed the complexity of a huge design
space using two families of synthetic workloads. The pre-
liminary experimental results reported in this paper show
that our methodology can provide better resource utiliza-
tion, particularly in the presence of load imbalance and
communication-intensive jobs.

We plan to extend these preliminary results by consider-
ing the effects of the memory hierarchy in a real application
rather than in synthetic workloads and to implement a mul-
titasking version of MPI-2 in a Linux cluster.

References

[1] A. C. Arpaci-Dusseau, D. Culler, and A. M. Mainwaring.
Scheduling with Implicit Information in Distributed Systems.
In Proceedings of the 1998 ACM Sigmetrics International

Conference on Measurement and Modeling of Computer Sys-
tems, Madison, WI, June 1998.

[2] R. A. F. Bhoedjang, T. Rühl, and H. E. Bal. User-Level Net-
work Interface Protocols. IEEE Computer, 31(11):53–60,
November 1998.

[3] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawick,
C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A Gigabit-
per-Second Local Area Network. IEEE Micro, 15(1):29–36,
January 1995.

[4] D. C. Burger and D. A. Wood. Accuracy vs. Performance in
Parallel Simulation of Interconnection Networks. In Proceed-
ings of the 9th International Parallel Processing Symposium,
IPPS’95, Santa Barbara, CA, April 1995.

[5] A. C. Dusseau, R. H. Arpaci, and D. E. Culler. Effective Dis-
tributed Scheduling of Parallel Workloads. In Proceedings of
the 1996 ACM Sigmetrics International Conference on Mea-
surement and Modeling of Computer Systems, Philadelphia,
PA, May 1996.

[6] D. G. Feitelson and M. A. Jette. Improved Utilization and
Responsiveness with Gang Scheduling. In D. G. Feitelson
and L. Rudolph, editors, Job Scheduling Strategies for Par-
allel Processing, volume 1291 of Lecture Notes in Computer
Science. Springer-Verlag, 1997.

[7] D. G. Feitelson and L. Rudolph. Parallel job scheduling: is-
sues and approaches. In D. G. Feitelson and L. Rudolph,
editors, Job Scheduling Strategies for Parallel Processing,
volume 949 of Lecture Notes in Computer Science. Springer-
Verlag, 1995.

[8] D. G. Feitelson and L. Rudolph. Toward Convergence in Job
Schedulers for Parallel Supercomputers. In D. G. Feitelson

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 500 us, Context Switch 50 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 500 us, Context Switch 100 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 500 us, Context Switch 200 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 1 ms, Context Switch 200 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 2 ms, Context Switch 200 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 1 ms, Context Switch 100 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 2 ms, Context Switch 100 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 1 ms, Context Switch 50 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Transpose

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 2 ms, Context Switch 50 us

Switch

Compute

Idle

a) b) c)

d) e) f)

g) h) i)

l)

Figure 7. Execution Characteristics of the Transpose Workload.

and L. Rudolph, editors, Job Scheduling Strategies for Par-
allel Processing, volume 1162 of Lecture Notes in Computer
Science. Springer-Verlag, 1996.

[9] A. Gerbessiotis and F. Petrini. Network Performance Assess-
ment under the BSP Model. In International Workshop on
Constructive Methods for Parallel Programming, CMPP’98,
Marstrand, Sweden, June 1998.

[10] A. Gupta, A. Tucker, and S. Urushibara. The Impact of Oper-
ating System Scheduling Policies and Synchronization Meth-
ods on the Performance of Parallel Applications. In Proceed-
ings of the 1991 ACM SIGMETRICS Conference, pages 120–
132, May 1991.

[11] A. Hoisie, O. Lubeck, and H. Wasserman. Scalability Anal-
ysis of Multidimensional Wavefront Algorithms on Large-
Scale SMP Clusters. In The Ninth Symposium on the Fron-
tiers of Massively Parallel Computation (Frontiers’99), An-
napolis, MD, February 1999.

[12] M. A. Jette. Performance Characteristics of Gang Scheduling
in Multiprogrammed Environments. In Supercomputing 97,
San Jose, CA, November 1997.

[13] W. Lee, M. Frank, V. Lee, K. Mackenzie, and L. Rudolph.
Implications of I/O for Gang Scheduled Workloads. In D. G.
Feitelson and L. Rudolph, editors, Job Scheduling Strategies
for Parallel Processing, volume 1291 of Lecture Notes in
Computer Science. Springer-Verlag, 1997.

[14] S. Nagar, A. Banerjee, A. Sivasubramaniam, and C. R. Das.
A Closer Look At Coscheduling Approaches for a Network
of Workstations. In Eleventh ACM Symposium on Parallel
Algorithms and Architectures, SPAA’99, Saint-Malo, France,
June 1999.

[15] W. E. W. Patrick Sobalvarro, Scott Pakin and A. A. Chien.
Dynamic Coscheduling on Workstation Clusters. In D. G.
Feitelson and L. Rudolph, editors, Job Scheduling Strategies
for Parallel Processing, volume 1459 of Lecture Notes in
Computer Science, pages 231–256. Springer-Verlag, 1998.

[16] F. Petrini. Network Performance with Distributed Memory
Scientific Applications. Submitted to the Journal of Parallel
and Distributed Computing, September 1998.

[17] F. Petrini and M. Vanneschi. Efficient Personalized Commu-
nication on Wormhole Networks. In The 1997 International
Conference on Parallel Architectures and Compilation Tech-
niques, PACT’97, San Francisco, CA, November 1997.

[18] F. Petrini and M. Vanneschi. SMART: a Simulator of Mas-
sive ARchitectures and Topologies. In International Con-
ference on Parallel and Distributed Systems Euro-PDS’97,
Barcelona, Spain, June 1997.

[19] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions
and Answers about BSP. Journal of Scientific Programming,
1998.

[20] P. Sobalvarro and W. E. Weihl. Demand-Based Coschedul-
ing of Parallel Jobs on Multiprogrammed Multiprocessors.
In Proceedings of the 9th International Parallel Processing
Symposium, IPPS’95, Santa Barbara, CA, April 1995.

[21] K. Suzaki and D. Walsh. Implementing the Combination of
Time Sharing and Space Sharing on AP/Linux. In D. G. Fei-
telson and L. Rudolph, editors, Job Scheduling Strategies for
Parallel Processing, volume 1459 of Lecture Notes in Com-
puter Science, pages 83–97. Springer-Verlag, 1998.

